
Ontology-based Semantic Metadata Validation

Vilho Raatikka2,1 and Eero Hyvönen1,2

1 University of Helsinki, Department of Computer Science
firstname.lastname@cs.helsinki.fi,

http://www.cs.helsinki.fi/group/seco/
2 Helsinki Institute for Information Technology (HIIT)

Abstract. Much of the Semantic Web content is generated from data-
bases, especially the instance data based on the ontology classes used
in applications. A recurring problem is that the instance data does not
always semantically conform to the ontology used. It may be ambigu-
ous, incomplete, or partly erroneous. Validating the data is necessary
when it is transformed to a more semantic format. This may be a dif-
ficult and laborious task given the large and complex ontologies and
databases in use. This paper discusses the problem of validating existing
database instance data according to an ontology. We show how Seman-
tic Web standards can augment the syntactic data validation schemes of
relational databases and XML towards semantic validation. A metadata
editor for semantic validation is being implemented. Its idea is to provide
an XML-based view to a relational database and transform the data into
RDF instances conforming to an RDF Schema, the ontology. The tool
will be applied in tranforming museum collection data into a semanti-
cally interoperable form in the Finnish Museums on the Semantic Web
project.

1 Introduction

The goal of our work is to combine data from heterogeneous museum databases
into a single open WWW service called Finnish Museums on the Semantic Web

(FMS) [7]. With this system, people interested in museum collections are offered
a single access point to a large national level collection of exhibits. To access the
service, only a common PC with a WWW browser and an Internet connection is
be needed. The idea of FMS is to combine collection data at the semantic level
by using semantic web technologies. In this way the user can be provided with
new semantic-based facilities for information retrieval, such as ontology-based
information retrieval and semantic browsing [9].

In order to reach this goal, the collection data stored in heterogenous databases
must first be harmonized. Combining data of heterogeneous data sources is a
challenge, which has been widely studied [1, 14]. The problem can be addressed
at syntactical and semantical levels.

On the syntactic level, naming conventions for the tables and fields of the
databases may be different. Also storing formats may be different in expressing
equal concepts and data. For instance, the age of a person can be either of a

numeric, an integer, or a number type. A more difficult question is how to com-
bine different database schemas. Syntactic and semantic harmonization entails
that one is be able to tell how to find the corresponding data values in different
databases, e.g., the name or the material of a collection item. This can be tricky,
if the databases store semantically different data, e.g., salaries with or without
taxes. In the museum case, databases record more or less the same data of sim-
ilar collection objects. This is partially because museums catalog collections use
standards, such as Spectrum3 and the CIDOC Guidelines4. Roughly speaking,
only the schema for storing the data is different, although some museums catalog
more metadata than others and syntactical differences may still be remarkable.
There is a great variety of different database management systems (DBMS) and
different database schemas in use, and the systems run on different platforms.

Harmonization on the semantic level includes schema intergation and termi-
nological interoperability. For example, different synonyms for the same object
may be used in different museums and by different catalogers, data about artists
and organisations may be cataloged by different naming conventions. There are
some classification standards and controlled vocabularies addressing the termi-
nology problem, such as OCM5, SHIC6, and ICONCLASS7. However, in practise
the terminology used in the data records is herogeneous.

In this paper a solution for harmonizing museum collection data on the syn-
tactic and semantic level is developed. We show how semantic web ontology
technigues, especially RDF [10] and RDF Schema [3] (RDFS), can be used in
making the database semantics explicit and for representing the database con-
tents is a harmonized uniform way. However, during the transformation of the
existing databases into a harmonized RDF repository, both syntactic and espe-
cially semantic validitation is needed. Valid semantic metadata is a prequisite
for the semantic information retrieval services provided by the envisioned FMS
system.

The paper is organized as follows. First representation and extraction of
semantics in databases is discussed. After this the steps needed in transforming
heterogeneous databases into a semantically harmonized RDF repository are
discussed. In conclusion, the implementation of a tool for helping the user in
this task is discussed.

2 Semantics in Databases

The design of a database starts typically by modeling a conceptual schema [17,
Ch.7.2]. The conceptual schema is based on the entities of the data and relations
between them. The relations are typically directed and labeled.

3 http://www.mda.org.uk/spectrum.htm
4 http://www.willpowerinfo.myby.co.uk/cidoc/
5 http://www.silverplatter.com/newFieldGuides/hraf/Outline of Cultural Materia.htm
6 http://www.holm.demon.co.uk/shic.htm
7 http://www.iconclass.nl/

item_id

ITEMREFERENCE

term

language

item_id

weight

color

1..n1..n
refersTo

Item

Language
Term Weight

Color

synonym_id
synonym_id

hasSynonym
Synonym

SYNONYM

Conceptual schema

Logical (relational) schema

Fig. 1. The mapping between the conceptual schema and the logical schema. “Each
synonym refers to at least one item and vice versa.”

The modeling notation may be, for example, UML [17, Ch.7.3] and based
on an entity-relationship-diagram (ER) [16, Ch.2]. The conceptual schema is
mapped to a logical model, which usually is a relational model [16, Ch.3]. The
entities are divided into tables as in Figure 1. Finally, the logical schema is
transformed into a physical schema in which all necessary platform specific re-
quirements are taken into account. The actual database is based on the physical
model.

The semantics can be expressed in a relational schema in many ways. A table
and its attributes (denoted as TABLE.attribute) are usually mapped to a class
and its attributes. For example, the table ITEM can be mapped to the class with
equal name and attributes ITEM.color and ITEM.weight. If an attribute refers
to another table as in Figure 1, the meaning of the relation can easily be seen
from the conceptual model. Referential integrity [4, Ch.6.2.4] in the relational
schema is achieved by foreign keys. Say that there is a foreign key r in the table
T1 which refers to the attribute s in the table T2. The referential integrity means
that for a given value of T1.r, T2.s having the equal value must exist. In Figure
1 the REFERENCE.item id, for instance, refers to ITEM.item id. Thus, any
given value of REFERENCE.item id must exist in the ITEM. Foreign keys in
Figure 1 express that there cannot be an item without at least one synonym and
vice versa. References of a database schema can also be explicitly named. The
reference from REFERENCE to ITEM could be named isSynonym, for instance.
Naming the references of a database further increases the expressiveness of a
particular database schema.

A mechanism called trigger is used in ensuring cardinality constraints pre-
sented in the conceptual model. The trigger is launched as a consequence of
a predefined action, for instance, if a row is included in the SYNONYM (see

Figure 1). The trigger performs an action, which checks that for the given SYN-
ONYM.synonym id, there is at least one REFERENCE.synonym id with an
equal value. That is, on the logical level the trigger may be used to force the
given cardinality constraints defined on the conceptual level.

Usually the database semantics must be extracted from the logical schema
because the up-to-date conceptual schema usually does not exist. Even if the
conceptual schema exists, it seldom is synchronized with the logical schema after
the logical schema is updated. The logical schema guarantees relatively efficient
operations and good update properties. However, the semantic readability of
the conceptual schema is lost in the logical model. In the Karlsruhe Ontology

and Semantic Web tool suite [13] (KAON) the logical schema of the database is
mapped straight to the ontology.

An alternative method is to re-create the conceptual schema from the logical
schema. It might be useful for two reasons. Firstly, reading semantics is much
easier from a conceptual schema than from a logical schema. Secondly, it is also
easier to combine two conceptual models of different databases than two logical
models.

It has been shown that any relational schema can be transformed into an ER-
diagram if the relational schema is in an entity-relationship normal form (ERNF)
[11, Ch.11.5]. By following certain rules in logical modeling, the database will
always be in the ERNF. Transforming a relational schema to an ER-diagram does
not result in a single ER-diagram but a restricted group of valid ER-diagrams.
It is the user’s task to choose the right one among the diagrams produced [11,
Ch.11]. By using conceptual models of databases it may be possible to further
automate the database mapping process.

All logical models cannot be mapped to a single concept schema. Instead,
the mapping may result in a set of formally correct schemas. As an example,
if the conceptual schema included a hierarchy of classes and was mapped to
a relational schema, then the re-engineering of the conceptual schema would
probably produce a set of models, all of which are not equal to the original
schema. For this reason human interaction will be needed.

The semantics of a database application is typically embedded into both the
business application and the database schema. The main goal of the database
is to offer safe and efficient operations with the data. Parts of the system’s
semantics are stored into the database, such as entities, relations between entities
and both cardinality and referential constraints. The semantics can be expressed
in many ways in the database thus making the reliable extraction of the database
semantics difficult.

The FMS system uses semantic web technologies in which the semantics are
not embedded but explicitly represented by a set of ontologies. An ontology “de-
scribes a formal, shared conceptualization of a particular domain of interest”
[6]. In FMS, ontologies are used for defining the semantics of stored museum
data. An ontology can be described with an RDF Schema (RDFS) [3] specifica-
tion. With RDFS one is able to define classes, class properties, basic property
constraints, and inheritance between classes. For example, it is possible to state

<xsd:element name="item">
 <xsd:attribute name="itemId" type="xsd:positiveInteger"/>
 <xsd:complexType>
 <xsd:element name="weight">
 <xsd:complexType>
 <xsd:element="type" type="xsd:string"/>
 <xsd:element="quantity" type="xsd:positiveInteger"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="color" type="xsd:string"/>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="synonym" maxOccurs="unbounded" minOccurs="1">
 <xsd:complexType>
 <xsd:element name="term" type="xsd:string" />
 <xsd:element name="language" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:complexType>
</xsd:element>

Materialized view

ITEM_VIEW

item_id
weight
color
term
language

item_id

ITEMREFERENCE

term

language

item_id

weight

color

synonym_id
synonym_id

SYNONYM

Logical (relational) schema

Fig. 2. Constructing a materialized view including the data required in the XML
Schema.

that the cat crossing the street is an instance of the class Cat, which in turn
is a subclass of Mammal. The Resource Description Framework (RDF) [10] can
be used to represent real-world instance data in terms of the ontology class(es)
and properties. The databases to be combined are transformed into an RDF
database, a knowledge base, conforming the ontologies in use.

3 Steps of Data Validation

Museum collections typically reside in protected databases to which only priv-
ileged applications have the read access. Alternatively, the data can be repub-
lished outside the database in a form that anybody can read and understand.
The latter approach was chosen in the FMS system. The collection data to be

published in FMS will reside in the ordinary public HTML directories of the
participating museums. No privileged access rights are needed. The FMS sys-
tem collects the data every now and then, and creates a central repository for
information retrieval. In this way the museums can select, edit, and separate
the information to be published from the database. In this way, there is no fear
of the original database being corrupted by unauthorized users. An additional
benefit is that the FMS system can be developed independently from the rest
of the museum information systems. The public repository can be used by other
applications as well.

In relational database management system (RDBMS) data is divided into
rows. Rows are stored into tables defined in the database schema. When data is
read from the database and copied for the application, it must be presented in
such a format that the application can use it. In an open system such as FMS,
the data transfer format must be such that it is commonly known and accepted,
and that anyone can translate to it. XML8 [2] fulfills these requirements and is
used in the FMS project as a data transfer format. XML is an open well-known
standard family with plenty of public domain and proprietary software available.

In order to publish a museum database in FMS, the following syntactic and
semantic validation steps must be taken. On the syntactic level, there may be
errors in the data, inconsistent usage of formats, or data missing. On the semantic
level, the terminology must be disambigiated and semantic validity constraints
taken into account.

Syntactic Validation

1. Database to XML transformation The data to be published is retrieved
from the data source and transformed to an XML format locally in the
museum. For this purpose, every joining museum is given the FMS XML

Schema defined by the FMS authorities.
2. XML Schema9 based validation The XML data is syntactically validated

against the FMS XML Schema. The schema consists of both obligatory and
optional elements. Fulfilling the obligatory requirements is the museum’s
own responsibility.

Semantic Validation

1. XML to RDF transformation After producing syntactically valid XML
data, the records are transformed into RDF. This phase has two compo-
nents: 1) The meaning of the XML elements is defined by mapping them to
ontology concepts. 2) The terminology used in the XML element values is
disambiguated by mapping them to RDF Schema ontology classes.

2. RDF Schema based validation The correctness of the RDF-statements
is validated against the property constraints of the RDF Schema.

In the following these steps are discussed in more detail.

8 http://www.w3c.org/XML/
9 http://www.w3c.org/XML/Schema

3.1 Syntactic validation

Materialized view

ITEM_VIEW

item_id
weight
color
term
language

<item itemId="10">
 <weight>
 <type>gram</type>
 <quantity>70</quantity>
 </weight>
 <color>red</color>
 <synonym>
 <term>Harakka</term>
 <language>finnish</language>
 </synonym>
 <synonym
 <term>Päähine</term>
 <language>finnish</language>
 </synonym>
</item>

10,’70g’,’red’,’Harakka’,’fi’
10,’70g’,’red’,’Päähine’,’fi’

rows to XML
process

Fig. 3. Transforming the data from the database view to the XML-document.

The data to be published in FMS must first be transformed to the XML
format conforming to the FMS XML Schema. The data can be read from the
database through a view (see Figure 2) [4, Ch.6.4], which helps in XML-trans-
formation. A view is a virtual table, a query-able interface, which hides the
physical and the logical details of the database from the user. The view consti-
tutes of an SQL query, which may join multiple tables. The query is executed
every time the view is queried. The remarkable difference to the database ta-
ble is that updating a view is restricted. By rewriting the query, the database
schema may be updated or the DBMS can be replaced with another without
having to interfere with the application. The DBMS guarantees that the data
of a view remains consistent if the original data is updated. In FMS the view
should include at least all obligatory fields defined in the XML Schema.

If the query constituting the view is complicated or the view is frequently
queried, the use of a materialized views is recommended. The materialized view is
a physical structure rather than a virtual table. Using materialized views results
in faster query execution than in logical views.

The data is queried through the view so that the rows are grouped by items.
For each item there is a set of rows, which are combined to a single XML card

(see Figure 3). After the translation, the document is validated against the XML
Schema. If the card is valid, the process continues to the next phase, semantic
validation.

3.2 Semantic Validation

The semantic validation phase has three components. Firstly, the meaning of
XML elements is defined by mapping them to ontological structures. Secondly,
the XML element values are mapped to the semantically corresponding ontology
classes. This mapping is semi-automatic; human intervention may be needed to
resolve semantic ambiguities. Thirdly, the RDF descriptions corresponging to

an XML card is created based on the mappings and it is validated against the
constraints expressed in the RDFS ontology.

Mapping XML Elements to Ontology Concepts The elements defined in
the XML Schema must be mapped to the classes and properties of the RDFS
ontology. Based on such a mapping, an XML card can be transformed into a set
of RDF triplets. The mapping defines the meaning of the XML elements by a set
of mapping rules. A mapping rule is a template of RDF triplets where XPath10

expressions are used to identify the actual element values. As an example of
XPath, assume the XML Schema below telling that the element item has a
subelement name with a string value. The XPath referring to the element name
is /item/name.

<xsd:element name="item">

<xsd:element name="name" type="xsd:string"/>

...

</xsd:element>

When applying a template rule to an XML card, the XPath expressions are
instantiated with matching element values. If some XPath in a rule cannot be
matched, the rule cannot be applied to the card. If the rule matches, then the
RDF template evaluates to a set of RDF triples where XPath expressions are
substituted by the corresponding element values. For example, three template
rules within the fms namespace are given below:

R1: </item/id, rdf:type, /item/name>

R2: </item/id, fms:madeOf, /item/material>

R3: </item/id, fms:hasLength, /item/length/id>

</item/length/id, rdf:type, fms:Length>

</item/length/id, fms:unitOfMeasure, /item/length/unit>

</item/length/id, fms:lengthValue, /item/length/value>

By applying them to the XML card

<item>

<id>id74</id>

<name>chip</name>

<material>silicon</material>

<lenght>

<id>len7</id>

<unit>mm</unit>

<value>12</value>

</length>

</item>

10 http://www.w3.org/TR/xpath

the following result is obtained:

<id74, rdf:type, ’chip’>

<id74, fms:madeOf, ’silicon’>

<id74, fms:hasLength, len7>

<len7, rdf:type, fms:Length>

<len7, fms:unitOfMeasure, ’mm’>

<len7, fms:lengthValue, ’12’>

The rules R1, R2, and R3 describe the meaning of the elements name, material,
and length, respectively.

Mapping Element Values to Classes The next step is term mapping. Here
the literal subject and object values of the RDF-triples are mapped to the cor-
responding ontology classes. However, based on the special character of the
rdf:type property, the literals in its domain position, id74 and len7 in the
example, are unique identifiers of instances

In FMS, term mapping is based on synomyn sets, synsets that are attached
to the ontology classes (concepts). They tell the possible classes that the lit-
eral names may refer to. For example, the class SemiconductorChip may have
the synset {’chip’}. The mapping from names to concepts is not unique due to
homonymy11. A syntactically valid literal may have several semantic interpre-
tations. For example, the literal chip in our example may refer to a squirrel
species, a semiconductor component, a kind of coin, and a piece of wood. As a
result, the synset of a class WoodChip in addition to SemiconductorChip may
contain the literal chip .

The result of applying term mapping to an RDF template is a set of RDF
triples where literal data values (other than identifiers and numbers) are replaced
by the URI references of the corresponding RDFS classes of the ontology. In our
example, the result is two alternative sets of triplets:

<id74, rdf:type, fms:SemiconductorChip>

<id74, fms:madeOf, fms:Silicon>

<id74, fms:hasLength, len7>

<len7, rdf:type, fms:Length>

<len7, fms:unitOfMeasure, fms:Mm>

<len7, fms:lengthValue, 12>

<id74, rdf:type, fms:WoodChip>

<id74, fms:madeOf, fms:Silicon>

<id74, fms:hasLength, len7>

<len7, rdf:type, fms:Length>

11 A homonymous word has several meanings.

<len7, fms:unitOfMeasure, fms:Mm>

<len7, fms:lengthValue, 12>

Validation against RDF Schema constraints The final step is to validate
the corresponding RDF triple sets with the RDF Schema constraints and, if
multiple interpretations still remain, select the right one by asking the human
user of the validator.

There are two property constraints defined in RDFS: The domain constraint
restricts the set of classes whose instances may have a particular property at-
tached to them. The range constraint defines the set of classes whose instances
can be values of a particular property. For example, the following description
can be used to tell that a SemiconductorChip is madeOf Silicon:

<rdf:Property rdf:ID="madeOf">

<rdfs:domain rdf:resource="#SemiconductorChip"/>

<rdfs:range rdf:resource="#Silicon"/>

</rdf:Property>

In our example, using this constraint would mean that the latter RDF triplet
interpretation in which the WoodChip is made of Silicon can be ruled out and
the semantic meaning of the XML card is disambiguated. However, using this
constraint means that it would not be possible to make another valid state-
ment, where a WoodChip is madeOf Wood. This is of course not the intention.
A disjuntion of range-domain-constraints allowing either wooden WoodChips or
SiliconChips made of silicon is needed. However, such a construct is not sup-
ported by RDFS. In more advanced ontology languages, such as DAML+OIL12,
mechanisms for defining more sophisticated constraints like this are available.
Another possibility is to design a special RDF(S) representation for disjuctive
constraints and use it for validation.

In addition to disambiguating term mapping, semantic validation based on
RDFS constraints can be used to detect semantic errors in the XML data. For
example, an XML card claiming that the chip is madeOf Water can be detected
semantically invalid. Also typos in names can be found because then the cor-
responding classes cannot be found (unless the typo results in a another valid
class name).

RDFS constraints allow only simple validation of binary constraints. It is
not possible to validate the data in a larger context by n-ary constraints, where
n < 2. For example, assume that the length of the chip is given in liters in our
example, which would be a semantic mistake. However, this cannot be detected
by considering the binary constraints on hasLength and unitOfMeasure. A ter-
tiary constraint on the length instance, its class type, and the unit of measure
is needed. Liter is a valid unit but not for lengths.

The result of term mapping and constraint validation is a unique set of RDF
triplets, the RDF card. It represents the original XML card on the semantic

12 http://www.daml.org/2001/03/daml+oil-index

level. The union of such RDF cards, generated from the XML cards of the het-
erogeneous databases, constitues a knowledge base. This knowledge base is the
harmonized semantic representation of the underlying heterogeneous databases.

4 Meedio: A Metadata Editor for Semantic Validation

To evaluate the ideas presented in this paper, an ontology about museum textiles
is being designed in the FMS project. The ontology describes the common con-
cepts about the textile domain so that museums can map their data sources to it.
This ontology will be used as the first test case for combining collection data in
the FMS system. To start with, XML data from the Espoo City Museum13 and
the National Museum of Finland14 museum will be used. For this purpose, an
initial FMS XML Schema has been specified and a database to XML transforma-
tor for the database of the National Museum of Finland has been implemented.
The next step is generate RDF data conforming to the ontology.

For this work, a semantic metadata validator is needed. A first version of
such a system, called Meedio has been implemented in a student project in the
summer 2002. The goal of this project was to implement a tool by which a
museum cataloger without background knowledge of XML or RDF could edit
and transform XML cards into semantically valid RDF form. Meedio allows
the user to manually edit the metadata, complete missing data, and add new
information. The user can browse the ontologies and attach RDF statements
to items or remove statements. This allows a convenient way to find and pick
correct instance values for a particular property. When the user saves the edited
results, the semantics of the RDF descriptions is validated against the range and
domain constraints of the ontology. If conflicts occur, the user is notified about
the problem. The user is responsible for any more refined semantic validation
of the data. For example, to notice that the length of a chip cannot be 12m.
The resulting valid RDF is stored to a location publicly available for the FMS
system.

Since the Meedio is an instance editor, ontologies cannot be updated. This
guarantees that users cannot corrupt the ontology by mistake. The management
of ontologies is centralized. If one realizes that the ontology is incomplete or
erroneous, one must request an update from the administrative staff of the FMS.

At the moment, Meedio is still in its infancy. For example, the term mapping
function described in this paper is not finished yet. The first version of the
system was implemented in Java with the help of Java Server Page technologies
[5], JSP Tag libraries [15], the Apache Tomcat servlet engine15, and HP Lab’s
Jena toolkit16 [12]. Meedio is used by an ordinary web browser.

13 http://www.espoo.fi/museo
14 http://www.nda.fi
15 http://www.apache.org/
16 http://www.hpl.hp.com/semweb/

Acknowledgements

Thanks to Samppa Saarela and Kim Viljanen for fruitful comments concerning
the paper. Mikko Apiola, Ari Inkovaara, Miikka Junnila, Justus Karekallas, and
Pekko Parikka participated in the team that implemented the demonstrational
system. Our work was partly funded by the National Technology Agency Tekes,
Nokia, TietoEnator, the Espoo City Museum, and the Foundation of the Helsinki
University Museum, and was supported by the National Board of Antiquities.

References

1. C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodolo-
gies for database schema integration. Computing Surveys, 18(4):323–364, 1986.

2. N. Bradley. The XML Companion. Addison-Wesley, 2002.
3. D. Brickley and R. V. Guha. Resource Description Framework (RDF) Schema

Specification 1.0, W3C Candidate Recommendation 2000-03-27, February 2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

4. T. Connolly and C. Begg. Database Systems - A Practical Approach to Design,
Implementation, and Management, Third Edition. Addison-Wesley, New York,
2002.

5. D. K. Fields, M. A. Kolb, and S. Bayern. Java Server Pages. Manning Publications
Co., 2002.

6. T. R. Gruber. A translation approach to portable ontology spesifications. Knowl-
edge Acquisition, 5(2):199–220, 1993.

7. E. Hyvönen, S. Kettula, V. Raatikka, S. Saarela, and Kim Viljanen. Semantic in-
teroperability on the web. Case Finnish Museums Online. In Hyvönen and Klemet-
tinen [8], pages 16–29. http://www.hiit.fi.

8. E. Hyvönen and M. Klemettinen, editors. Towards the semantic web and web ser-
vices. Proceedings of the XML Finland 2002 conference. Helsinki, Finland, num-
ber 2002-03 in HIIT Publications. Helsinki Institute for Information Technology
(HIIT), Helsinki, Finland, 2002. http://www.hiit.fi.

9. E. Hyvönen, A. Styrman, and S. Saarela. Ontology-based image retrieval. In
Hyvönen and Klemettinen [8], pages 43–45. http://www.hiit.fi.

10. O. Lassila and R. R. Swick (editors). Resource description framework (RDF):
Model and syntax specification. Technical report, W3C, February 1999. W3C
Recommendation 1999-02-22, http://www.w3.org/TR/REC-rdf-syntax/.

11. H. Mannila and J.-P. Räihä. Design of Relational Databases. Addison-Wesley, New
York, 1992.

12. B. McBride, A. Seaborne, and J. Carroll. Jena tutorial for release 1.4.0.
Technical report, Hewlett-Packard Laboratories, Bristol, UK, April 2002.
http://www.hpl.hp.com/semweb/doc/tutorial/index.html.

13. B. Motik, A. Maedche, and R. Volz. A conceptual modeling approach for semantics-
driven enterprise applications. Technical report, University of Karlshure, 2002.

14. E. Rahm and P. A. Bernstein. On matching schemas automatically. Technical
Report MSR-TR-2001-17, Microsoft Research, Microsoft Corporation, Redmond,
WA, USA, 2001.

15. G. Shachor, A. Chase, and Magnus Rydin. JSP Tag Libraries. Manning Publica-
tions Co., 2001.

16. A. Silbershcatz, H. F. Korth, and S. Sudarshan. Database System Concepts, third
edition. McGraw-Hill, New York.

17. J. Sowa. Knowledge Representation. Logical, Philosophical, and Computational
Foundations. Brooks/Cole, 2000.

